SYNTHETIC CUSTOMERS

for Big Data Privacy



The Privacy vs. Innovation Clash

PROBLEM

SOLUTION

Data Privacy Hampers Innovation

Classic Anonymization Fails for Big Data

Synthetic Data is anonymous.

Generative Al — As-Good-As-Real
Synthetic Data generated at scale

We demand highest standards for data protection,
but also need to collaborate broadly on data in order
to develop next-gen digital services and processes.

Classic anonymization techniques need to destroy
most of the available information to prevent
re-identification of individuals (see appendix).

Synthetic data is not restricted in its usage, and is free
to store, to use, to explore, to experiment, to modify,
and to share, within and outside of the organization.

Academic advances on deep generative neural
networks have resulted in highly realistic synthetic
images, near indistinguishable from real ones.
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Anonymization for Big Data
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The Problem Classic Anonymization Fails for Big Data

of mobile phone owners are re-identified
simply by 2 antenna signals, even when
coarsened to the hour of the day

of credit card owners are re-identified by 3
transactions, even when only merchant and the
date of transaction is revealed

of all people are re-identified, merely by their
date-of-birth, their gender and their ZIP code of
residence
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AOL: "This was a screw up”
— IAST@GMPANY

NetFlix Cancels Recommendation Stick .
Contest After Privacy Lawsuit an y da.ta, Wh
OnymIZed' i

. Still ident:
Ehe Researchers spotlight the lie of tify yoy

Newilork us’ data
Cimes anonymo

+ SCIENCE & TECHNOLOGY

You’re
, NOt so anon
Sorry, your data can still be ymous

idelltiﬁed even if it’s anonymiled Saying it's Anonymous Doesn't Make It So: Re-

identifications of "anonymized” law school data

REGULATION

Harvard

There’s No Such Thing Résieess
as Anonymous Data

Sources: [1], [2], [3], [4], [3], [€] mostly


https://hbr.org/2015/02/theres-no-such-thing-as-anonymous-data
https://news.harvard.edu/gazette/story/2011/10/youre-not-so-anonymous/
https://techscience.org/a/2018111301/
https://www.theglobeandmail.com/technology/digital-culture/sticky-data-why-even-anonymized-information-can-still-identify-you/article19918717/
https://www.fastcompany.com/90278465/sorry-your-data-can-still-be-identified-even-its-anonymized
https://techcrunch.com/2019/07/24/researchers-spotlight-the-lie-of-anonymous-data/

No Solution for Big Data Anonymization Exists

amount of
shareable
information

Classic Anonymization

Ve

amount of captured information
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The Consequence

Operations

OO Researcher

Innovation

] Developers ,A». Business Partners

Data Scientists

Business Analysts

— How to be data-driven & customer-centric in the era of data privacy?
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The Solution Al-Generated Synthetic Data

Al-generated synthetic faces @

(as demonstrated by Nvidia) NVIDIA.



Game Changer for Big Data Anonymization

Big Data

mostly

Al-generated Synthetic Data

amount of
retained
data value

Classic Anonymization

amount of captured data value
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Synthetic Data allows you to do both:

1 . Retain Big Data’s Value & Information

2. Full Anonymization
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Our Solution The Synthetic Data Engine by Mostly Al

NAME AGE GENDER ITEM EUR DATE TIME NAME AGE GENDER ITEM EUR DATE TIME
Mary 25y female Book 12€ 4/2/19 8:12 /e w0 o o) Kim 29y female Amazon 236€ 4/4/19 12:32
John 72y  male Pizza 34€ 4/2/19 18:12 Kim 29y female Zalando 36€ 4/4/19 18:58
Bill 18y  male Swim 6€ 4/4/19 10:02 Brian 82y male Beer 6€ 4/2/19 21:32
Bill 18y male Shoes 123€ 4/4/19 12:32 Sue 24y female Sushi 12€  4/2/19 21:32 -

actual, privacy-sensitive data

synthetic, statistical representative data

- VAVAVIVIVEVAN

QT)

] anonymous granular-level data

_ ) retains statistical value
Finance Retail Insurance Health Public

H v

unrestricted big data utilization



Our Solution Flexible, Scalable & Easy-To-Use

Command Line Interface > mostly config /path/to/data

> mostly train /path/to/data

[ o] .
mxD  easy setup on-premise or cloud
> mostly generate -n 1000000 = y P P
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Our Solution Unparalleled Accuracy & Quality
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for Synthetic Data

for Internal Data Sharing for External Data Sharing for External Data Monetization
- Al Training & Analytics - Open Innovation - Strategic Partnerships
- Testing & Development - Startup Collaborations - Data Marketplaces

- UX & Customer Centricity - Research Collaborations - Data Resellers
- Cloud Migration - Vendor Validation - Market Research Intel
- Breaking Down Data Silos - Sandboxes

- Advanced Predictive Analytics
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Mostly Al's Synthetic Data Engine...

1. 2. 3.

Faster Cheaper L ess Risk

Innovation!
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Customer Success Story
Product Development in Finance Industry

Business Needs Solution - Deployed & Validated
1. Testing with realistic data
L . . o © Generate DD
2. UXoptimization with realistic data N
3. 3"party developer ecosystem <
Erika Stadlober
4. Open research collaborations it s

- married, 2 kids

- EUR 2'483 salary

- 1 current account
w/ EUR 15°704

- 1 savings account
w/ EUR 20'818

- 1 VISA credit card

£on

pvallable: € 94131
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Synthetic Data is THE way forward for Privacy-Preserving Big Data
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We believe in the power of data.
We believe in the right for privacy.

We are here to make it possible!

Microsof
PLUGANDPLAY M > A/\M> € Google Cloud -% forsrups  weXelerate

NVIDIA. ASSOCIATION for Startups
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Innovative Company?

most Ly Big Data Assets Untapped?

Alexandra Ebert

Client Relations & External Affairs
alexandra.ebert@mostly.ai

+43 664 884 711 52
WWw.mostly.ai



mailto:alexandra.ebert@mostly.ai
http://www.mostly.ai

Customer Success Story



Customer Success Story
Product Development in Finance Industry

Business Needs

1. Testing with realistic data
Farmity Account

£ QAT g 2. UXoptimization with realistic data

Aol 1
el €947 l 3.  Development of smart features

MNSP&“O“S :k; r T o
X & Family Account
£3900

nS
§ Reservato
A Qrders

(balance forecasting)

4. 3" party developer ecosystem

Open research collaborations with

universities

(and more)
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Customer Story

Product Development in Finance Industry

Select Pre-Generated User
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The Solution
- deep generative model trained on 100k+ customers w/ 100m+ financial transactions

- ability to simulate an unlimited number of synthetic profiles, accounts and transactions
- results are highly realistic and representative; retain detail, structure and variation
- independent audit by bank’s analytics team: “over-achieved” mostly



Customer Story Data Quality

Transaction Level
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100+ merchants

Billa

Spar
Kirchenbeitrag
lkea

Libro

Kik

Drei

UPC

ORF GIS

Uniga

OBB

WGKK Zahlung
Wiener Netze
Radatz

— actual & synthetic patterns near identical for 100+ merchants

Hofer
Merkur
Starbucks
Mediamarkt
Thalia
Fressnapf
AirBnB
EVN

oMV

Al
Bauhaus
Santander
Generali
Amazon
Finanzamt
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Customer Story Data Quality

Customer Level

€ / month
some insurance some retailer
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correlations

target data

synthetic data

— actual & synthetic patterns near identical for 100+ merchants
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Synthetic Credit Card Fraud

(data.table)
(ranger)
(pROC)

val <- fread('!
tgt <- fread('
syn <- fread('k

dim(tgt)

# [1] 142403 31
mean(tgt$Class)

# [1] 0.001727492

# train random forest
m_tgt <- ranger(Class~., data = tgt)
m_syn <- ranger(Class~., data = syn)

auc(roc(as.factor(val[, Class]), predict(m_tgt, val)$predictions))
# 0.9562
auc(roc(as.factor(val[, Class]), predict(m_syn, val)$predictions))
# 0.9486

tgt[, .N, by = Class] # 246
syn[, .N, by = Class] # 265

https://www.kaggle.com/mlg-ulb/creditcardfraud

- 142k records
- 30 attributes
- 0,17% of cases are labelled fraud

Synthetic data of same size and structure as the original
dataset is being generated via the Synthetic Data Engine.
Subsequently a sophisticated machine learning algorithm
(Random Forest) is trained on the original as well as on
the synthetic version, and then evaluated on an actual
holdout dataset in terms of accuracy. As can be seen, the
accuracy of the two model is nearly the same.

— synthetic data can be used for advanced ML algos
— synthetic data also retains weak signals in the data


https://www.kaggle.com/mlg-ulb/creditcardfraud

Synthetic eCommerce Visitors

N syn

Colors

W syn2

n target

Revenue Distribution by Device Category

Number of Records

Visits w/ Transactions
Pctg Visits w/ Transactions
Percentile (25) of TransRev
Percentile (50) of TransRev
Percentile (75) of TransRev
Median Total Trans Rev

Trends over Time
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Month of Date

desktop
syn2
1,179,133
15,076
1.62%
2,418
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A

2018

mobile
target synl syn2 target synl
171,579 461,761 62,215 471,336
16,905 1,573 1,364
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Correlation between TimeOnSite and Hits - by Country
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https://www.kaggle.com/c/ga-customer-re

venue-prediction

- 1.3m visitors with 1.7m visits
- 40 attributes captured per visit

- date, time

- geography

- browser info

- traffic source
- only 1.1% of visits have transactions
- transaction revenues are strongly
right-skewed (~31)

2 synthetic versions of the target data are

being generated via the Synthetic Data

Engine, and then compared to each other.

— statistics match perfectly


https://www.kaggle.com/c/ga-customer-revenue-prediction
https://www.kaggle.com/c/ga-customer-revenue-prediction

Synthetic eCommerce Visitors
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https://www.kaggle.com/c/ga-customer-revenue-prediction
https://www.kaggle.com/c/ga-customer-revenue-prediction

Synthetic Data Diamonds

color * clarity * depth * table * price ~ clarity * depth ~ table * price *

Ideal Si2 61.5 55.0 Premium Si1 61.5 58.0 508

Premium Si1 59.8 61.0 Ideal SI2 60.8 56.0
Good Vs1 56.9 65.0 Good 63.8 58.0
Premium Vs2 62.4 58.0 Very Good G 62.9 57.0
Good SI2 63.3 58.0 Premium 60.7 60.0
Very Good 62.8 57.0 Premium 61.0 58.0

Very Good 62.3 57.0 ideal 62.9 55.0

0 N OV AW N
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Very Good 61.9 55.0 Ideal 2 61.1 56.0
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