SYNTHETIC CUSTOMERS

for Big Data Privacy

The Privacy vs. Innovation Clash

Data Privacy Hampers Innovation

We demand highest standards for data protection, but also need to collaborate broadly on data in order to develop next-gen digital services and processes.

PROBLEM

Classic Anonymization Fails for Big Data

Classic anonymization techniques need to destroy most of the available information to prevent re-identification of individuals (see appendix).

1

Synthetic Data is anonymous.

Synthetic data is not restricted in its usage, and is free to store, to use, to explore, to experiment, to modify, and to share, within and outside of the organization.

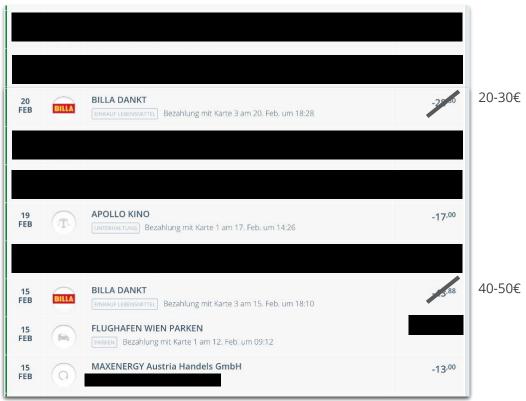
SOLUTION

Generative AI → As-Good-As-Real Synthetic Data generated at scale

Academic advances on deep generative neural networks have resulted in highly realistic synthetic images, near indistinguishable from real ones.

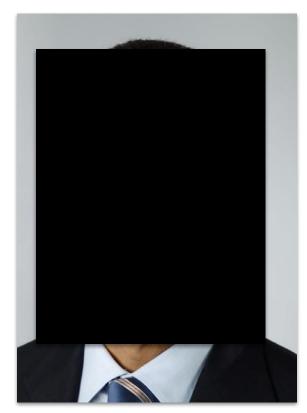
The Problem Anonymization Fails for Big Data

User #3dcf29717a9f9b39



User #71f7c3014d2ced27

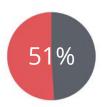
The Problem Anonymization Fails for Big Data



User #3dcf29717a9f9b39

User #71f7c3014d2ced27

The Problem Classic Anonymization Fails for Big Data



of **mobile phone owners** are re-identified simply by 2 antenna signals, even when coarsened to the hour of the day

of **credit card owners** are re-identified by 3 transactions, even when only merchant and the date of transaction is revealed

of **all people** are re-identified, merely by their date-of-birth, their gender and their ZIP code of residence

WIRED

AOL: "This was a screw up"

FAST @MPANY

NetFlix Cancels Recommendation Contest After Privacy Lawsuit

The New York Times Researchers spotlight the lie of 'anonymous' data Sticky data: Why even 'anonymized' information can still identify you

SCIENCE & TECHNOLOGY

You're not so anonymous

Sorry, your data can still be identified even if it's anonymized

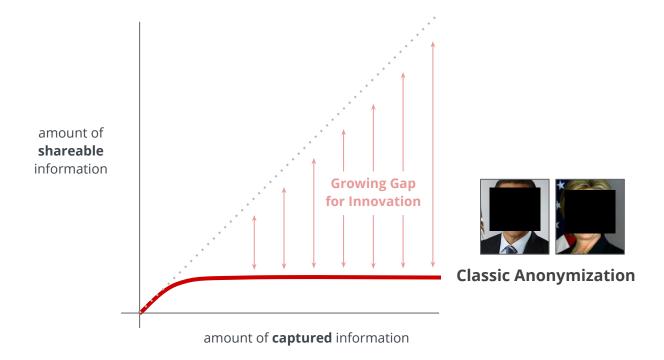
Saying it's Anonymous Doesn't Make It So: Reidentifications of "anonymized" law school data

REGULATION

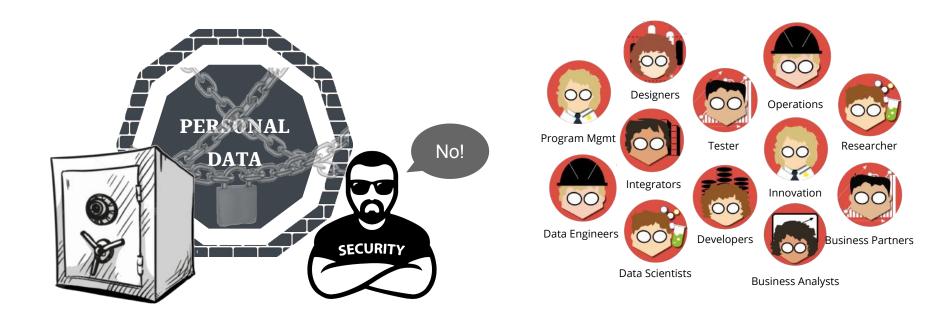
There's No Such Thing as Anonymous Data

Harvard Business Review

No Solution for Big Data Anonymization Exists



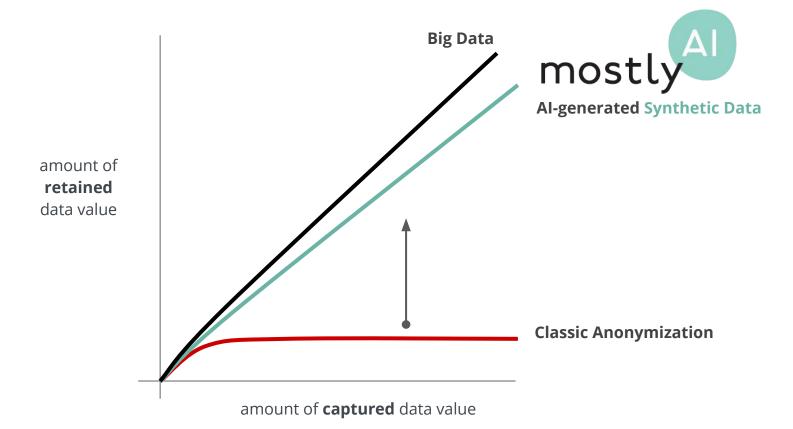
The Consequence



→ How to be **data-driven & customer-centric** in the era of data privacy?

The Solution AI-Generated Synthetic Data

Game Changer for Big Data Anonymization



Synthetic Data allows you to do both:

Retain Big Data's Value & Information

2 Full Anonymization

Our Solution The Synthetic Data Engine by Mostly AI

NAME	AGE	GENDER	ITEM	EUR	DATE	TIME
Mary	25y	female	Book	12€	4/2/19	8:12
John	72y	male	Pizza	34€	4/2/19 1	8:12
I	,	male male			4/4/19 1 4/4/19 1	

NAME	AGE	GENDER	ITEM	EUR	DATE	TIME
Kim	29y	female	Amazon	236€	4/4/19	12:32
Kim	29y	female	Zaland	o 36€	4/4/19	18:58
Brian	82y	male	Beer	6€	4/2/19	21:32
Sue	24y	female	Sushi	12€	4/2/19	21:32

actual, privacy-sensitive data

anonymous granular-level data

retains statistical value

unrestricted big data utilization

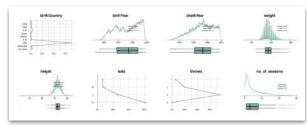
Our Solution Flexible, Scalable & Easy-To-Use

Command Line Interface

- > mostly config /path/to/data
- > mostly train /path/to/data
- > mostly generate -n 1000000

Graphical User Interface

Quality Assurance Reports

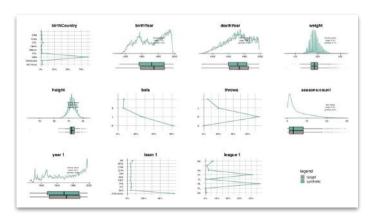


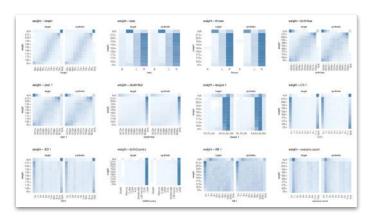
easy setup on-premise or cloud

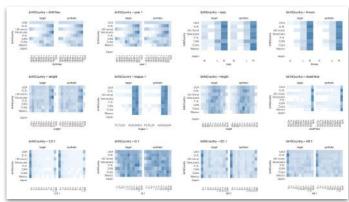
scales to millions of users

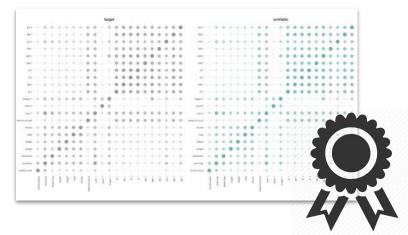
unlimited amount of synthetic data

Our Solution Unparalleled Accuracy & Quality









Use Cases for Synthetic Data

for Internal Data Sharing

- Al Training & Analytics
- Testing & Development
- UX & Customer Centricity
- Cloud Migration
- Breaking Down Data Silos
- Advanced Predictive Analytics

for External Data Sharing

- Open Innovation
- Startup Collaborations
- Research Collaborations
- Vendor Validation
- Sandboxes

for External Data Monetization

- Strategic Partnerships
- Data Marketplaces
- Data Resellers
- Market Research Intel

Mostly AI's Synthetic Data Engine...

1. 2. 3.Faster Cheaper Less Risk

...Al & Big Data Innovation!

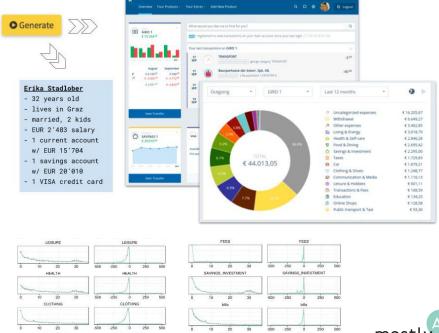
Customer Success Story

Product Development in Finance Industry

Business Needs

- 1. Testing with realistic data
- 2. UX optimization with realistic data
- 3. 3rd party developer ecosystem
- 4. Open research collaborations

Solution - Deployed & Validated



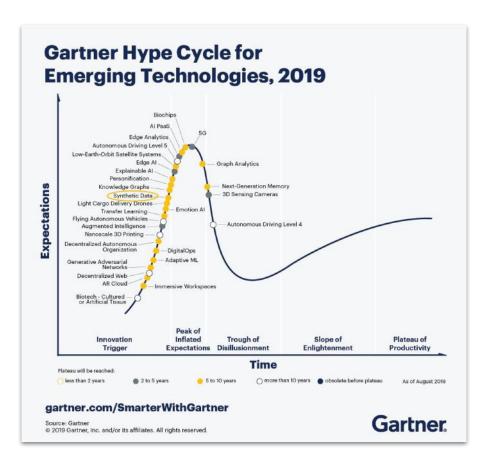
Synthetic Data is THE way forward for Privacy-Preserving Big Data

Forbes on Power of Synthetic

US Census goes Synthetic

"Privacy and Security are Converging" HBR article Jan 2019

Nadella: "Privacy is a Human Right"



Join the Synthetic Data Revolution Today!

We believe in the right for privacy.

We are here to make it possible!

DEC'19

Innovative Company? Big Data Assets Untapped? Go Synthetic Today!

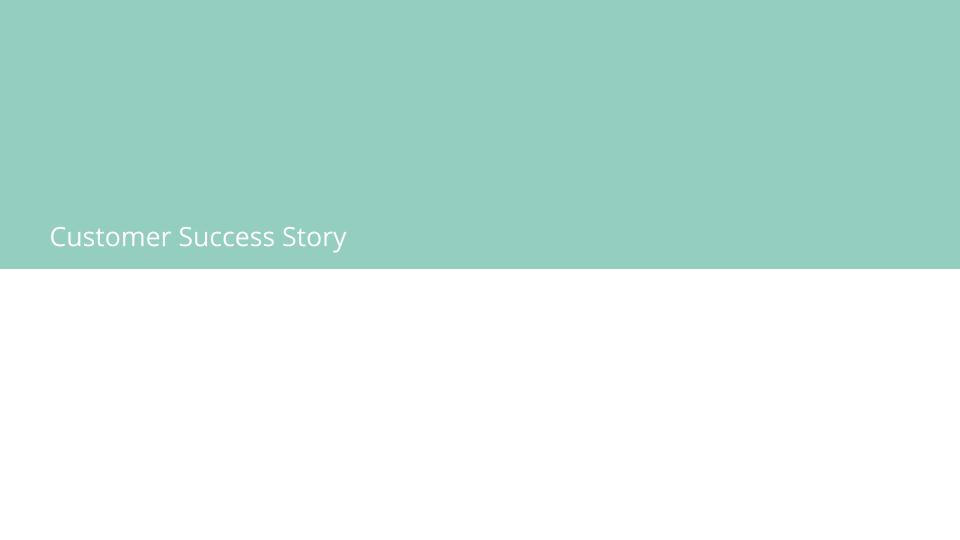
Alexandra Ebert

Client Relations & External Affairs

<u>alexandra.ebert@mostly.ai</u>

+43 664 884 711 52

<u>www.mostly.ai</u>



Customer Success Story

Product Development in Finance Industry

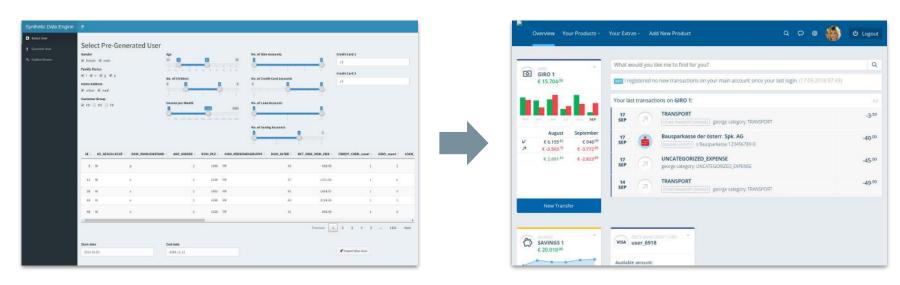
Business Needs

- 1. Testing with realistic data
- 2. UX optimization with realistic data
- Development of smart features
 (balance forecasting)
- 4. 3rd party developer ecosystem
- 5. Open research collaborations with universities

(and more)

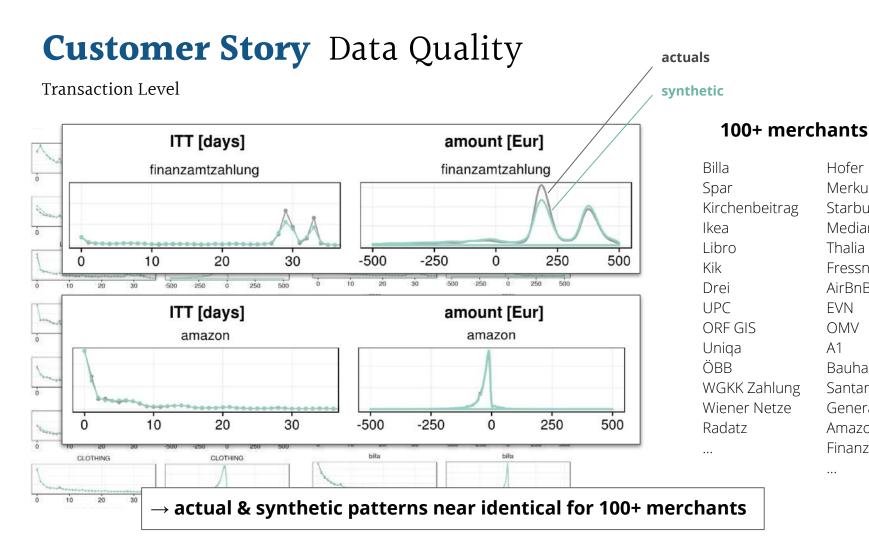
Customer Story

Product Development in Finance Industry



The Solution

- deep generative model trained on 100k+ customers w/ 100m+ financial transactions
- ability to simulate an unlimited number of synthetic profiles, accounts and transactions
- results are highly realistic and representative; retain detail, structure and variation
- independent audit by bank's analytics team: "over-achieved"



Hofer

Thalia

AirBnB

FVN

OMV

Bauhaus

Generali

Amazon **Finanzamt**

Santander

Α1

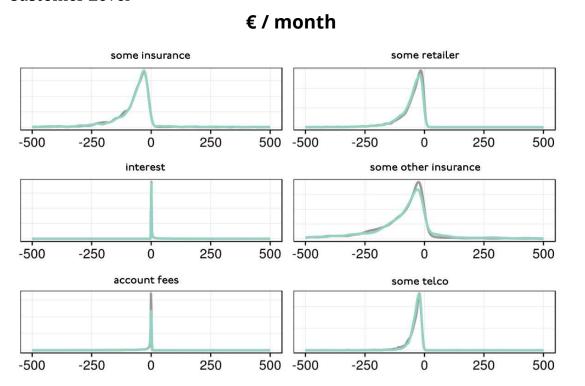
Merkur

Starbucks Mediamarkt

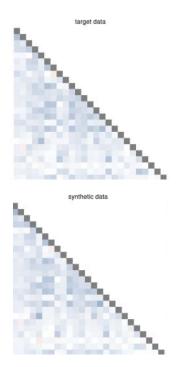
Fressnapf

Customer Story Data Quality

Customer Level



correlations



ightarrow actual & synthetic patterns near identical for 100+ merchants

Demos

Synthetic Credit Card Fraud

```
library(data.table)
library(ranger)
library(pROC)
val <- fread('kaggle-fraud/data/cc-test.csv')</pre>
tqt <- fread('kaggle-fraud/data/cc-train.csv')</pre>
syn <- fread('kagale-fraud/data/fraud-gen.csv')</pre>
dim(tgt)
# [1] 142403
                 31
mean(tqt$Class)
# [1] 0.001727492
# train random forest
m_tgt <- ranger(Class~., data = tgt)</pre>
m_syn <- ranger(Class~., data = syn)
auc(roc(as.factor(val[, Class]), predict(m_tgt, val)$predictions))
# 0.9562
auc(roc(as.factor(val[, Class]), predict(m_syn, val)$predictions))
# 0.9486
tqt[, .N, by = Class] # 246
syn[, .N, by = Class] # 265
```

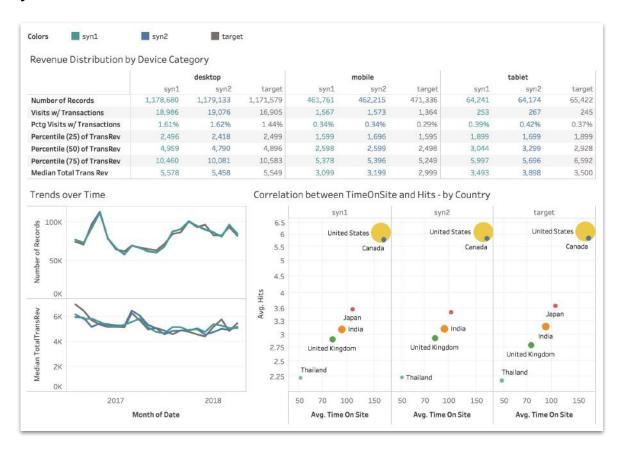
https://www.kaggle.com/mlg-ulb/creditcardfraud

- 142k records
- 30 attributes
- 0,17% of cases are labelled fraud

Synthetic data of same size and structure as the original dataset is being generated via the Synthetic Data Engine. Subsequently a sophisticated machine learning algorithm (Random Forest) is trained on the original as well as on the synthetic version, and then evaluated on an actual holdout dataset in terms of accuracy. As can be seen, the accuracy of the two model is nearly the same.

- ightarrow synthetic data can be used for advanced ML algos
- \rightarrow synthetic data also retains weak signals in the data

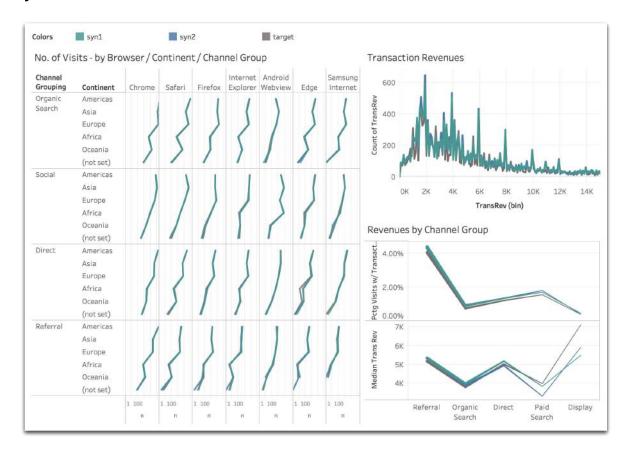
Synthetic eCommerce Visitors



https://www.kaggle.com/c/ga-customer-revenue-prediction

- 1.3m visitors with 1.7m visits
- 40 attributes captured per visit
- date, time
- geography
- browser info
- traffic source
- ...
- only 1.1% of visits have transactions
- transaction revenues are strongly right-skewed (~31)
- 2 synthetic versions of the target data are being generated via the Synthetic Data Engine, and then compared to each other.
- → statistics match perfectly

Synthetic eCommerce Visitors



https://www.kaggle.com/c/ga-customer -revenue-prediction

- 1.3m visitors with 1.7m visits
- 40 attributes captured per visit
- date, time
- geography
- browser info
- traffic source
- ...
- only 1.1% of visits have transactions
- transaction revenues are strongly right-skewed (~31)

2 synthetic versions of the target data are being generated via the Synthetic Data Engine, and then compared to each other.

→ statistics match perfectly

Synthetic Data Diamonds



	carat ‡	cut ÷	color ‡	clarity ‡	depth ‡	table =	price ‡
	0.32	Premium		SI1	61.5	58.0	508
2	2.07	Ideal	н	SI2	60.8	56.0	12920
	0.31	Good	E	SI1	63.8	58.0	537
	1.05	Very Good	G	VVS2	62.9	57.0	8173
	0.45	Premium		VS1	60.7	60.0	898
	0.90	Premium	н	VVS1	61.0	58.0	4931
	1.10	Ideal	E	IF	62.9	55.0	12508
8	0.75	Ideal		VS2	61.1	56.0	3169

