Proton Motor Fuel Cell GmbH

Manfred Limbrunner

Director Sales & Marketing / Member of the Board

Fuel Cells · Power Systems

Company & Holding

Only European manufacturer of long life time PEM fuel cell stacks and fuel cell systems for high power applications

Proton Motor Fuel Cell GmbH:

Located: Puchheim (Munich area)

CEO: Dr. Faiz Nahab

Founded: 1998

Employees: 102

Space: 6.000 m² (development and production)

Proton Motor Power Systems PLC:

Located: Newcastle upon Tyne (UK)

Chairman: Mr. Helmut Gierse

Board: Dr. Faiz Nahab (CEO PM)

Mr. Roman Kotlarzewski (CFO PM)

Mr. Sebastian Goldner (CTO/COO PM)

Mr. Manfred Limbrunner (CSO PM)

Founded: 2006

WKN: A0LC22 @ London Stock Exchange

High Power Capable Types of Fuel Cells

	FC Types	Fuel	Temp.	Pros	Cons
	AFC Alkaline Fuel Cell	H2	≤ 80°C	Dynamic operationStart/Stop capabilityHigh el. EfficiencyEmission free	High H2 purityHigh O2 purityLow lifetime
PM	PEFC Polymer Electrolyte Fuel Cell	Н2	≤ 80°C	Dynamic operationStart/Stop capabilityHigh el. EfficiencyHigh lifetimeEmission free	• High H2 purity
	PAFC Phosphoric Acid Fuel Cell	Reformate	≤ 200°C	• Low H2 & O2 purity	 Low Dynamic operation Start/stop capability Low el. Efficiency Low lifetime Emissions
	MCFC Molten Carbonate Fuel Cell	Reformate	≤ 650°C	• Low H2 & O2 purity	 Low Dynamic operation Start/stop capability Low el. Efficiency Low lifetime Emissions
	SOFC Solid Oxide Fuel Cell	Reformate	≤ 1000°C	Low H2 & O2 purityHigh LifetimeHigh el. efficiency	Low Dynamic operationStart/stop capabilityEmissions

Hydrogen Storage Systems for PEFC Applications

	On Board II2 Stores		Automotive				
	On-Board H2 Stor Systems	Passenger Cars	Utility Vehicles	Rail	Maritime		
	Compressed Gaseous	350 bar		Х	Х	Х	
	Hydrogen (CGH)	700 bar	X				
Fuel Cells - Power Systems	Liquid Hydrogen (X	Fuel Cels - Power Systems	
	Metal Hydride Sto				X		
	Liquid Organic Hyo Carrier (LOHC)	To be developed					
	Ammonia		To be developed				

Proton Motor Fuel Cell GmbH

Start development of Fuel Cell Technology

1994

Bayernbus set into operation

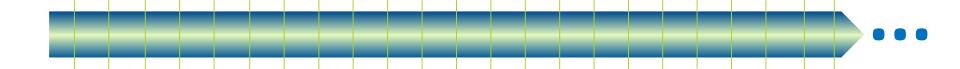
2000

Fuel Cell Ship "Alsterwasser" in operation

2008

Road approval Newton with HyRange®

2011


EPS-System BOS Application

2016

75 kVA Fuel Power plant Surf'n'Turf

2017

1998

Foundation Proton Motor Fuel Cell GmbH

2001

World first Fuel Cell Fork Lift

2009

World first Triple Hybrid City Bus

2012

EPS System installed in Bachhausen

2016

Presentation of FC REEV vehicle

2018

FC-EPS System at DB Netz AG

Modular Fuel Cell Stack & System Approach

PM200 Stack Modules

FC Power Range: 2,1...14,8 kW_{el} (2 kW steps)

Current range: 0...150 A

Efficiency: 47...67%

Life time: > 20.000 operating hours

Protection class: IP65

PM400 Stack Modules

FC Power Range: 14,2...71,0 kW_{el} (7 kW steps)

85...213 kW_{el} (20 kW steps)

Cascadable into MW_{el} power range

Current range: 0...500 A

Ambient Temp.: -35 to +45 °C

H2 pressure: 3,5 / 8,0 bar_g

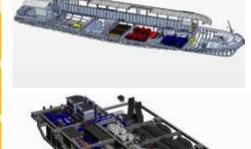
Conformity: CE, EN 62282-2

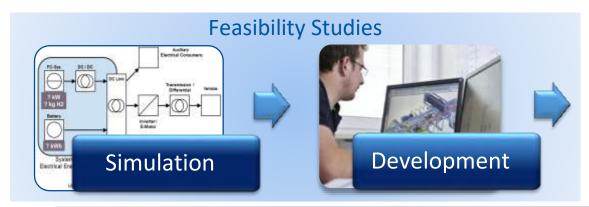
Freeze storage and freeze start capable (since 2010)

No need for humidification

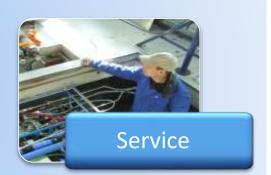
Liquid cooled

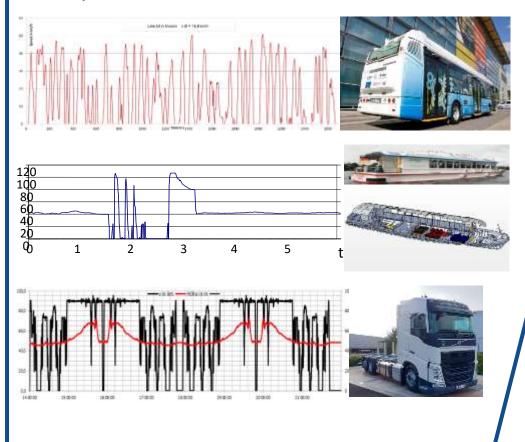
Modular System Approach for OEM Products





From Concept to Application





Fuel Cell Hybrid Concept

Demand of application defined through:

- Drive/Load Cycle
- Energy Autonomous Operation
- Stand By Time Between Operation
- Payload

Design & Dimensioning Principals:

Target: Refilling **NOT** Recharging

Peak Power and/or Breaking Power

Battery Size [kWh]

Average Powe

Fuel Cell Size [kW_{el}]

Energy
Autonomous
Operation

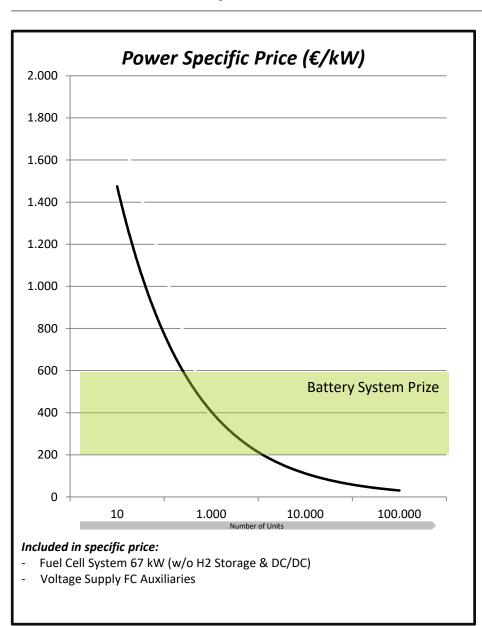
H2-Storage Size [kg H2]

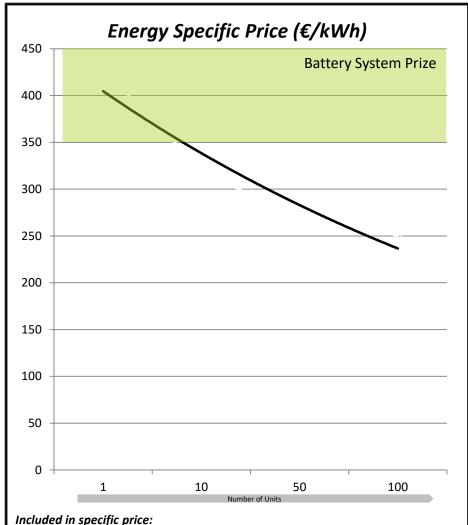
Definition within Proton Motor:

FC Range Extender: Fuel cell power less than average

power of application

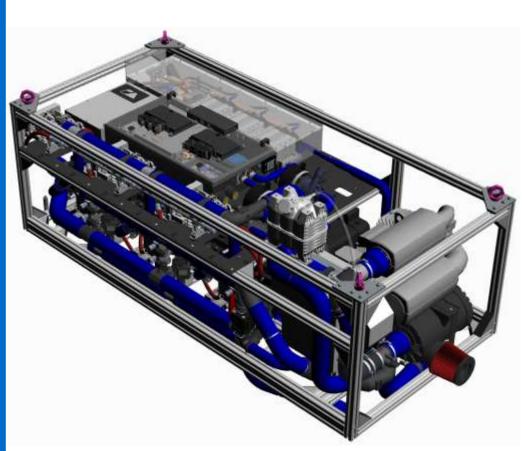
→ refilling **AND** recharging


FC Hybrid: Fuel cell power higher than


average power of application

→ refilling **NO** recharging

Price Development Fuel Cell System



- Fuel Cell System 67 kW
- Voltage Supply FC Auxiliaries
- DC/DC Converter and Voltage Supply Auxiliaries
- H2 Storage System 30 kg @ 350 bar

Fuel Cell System (Multi Stack System)

Power Levels: 85...213 kW_{el} (20 kW steps)

Fuel Cell System 213 kW:

FC Power: 31...213 kW_{el}

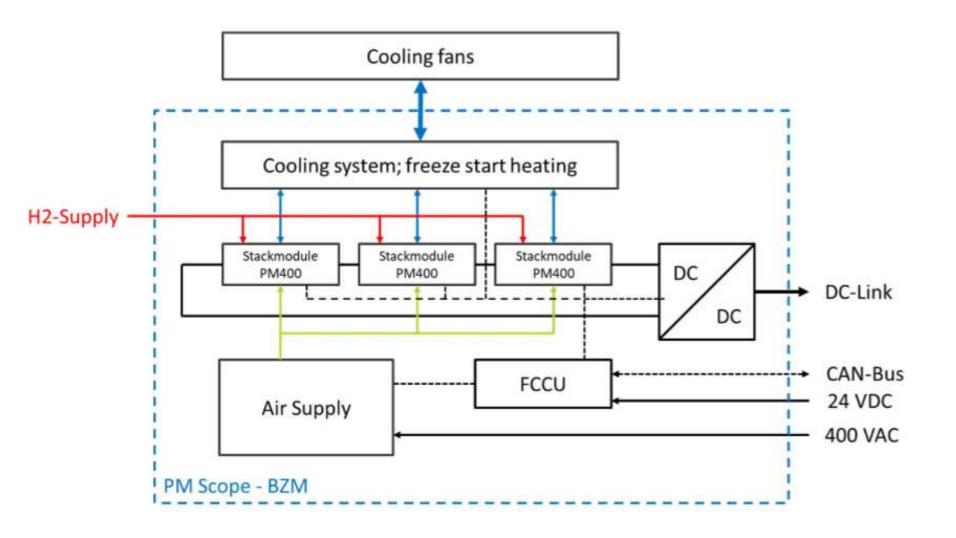
Output Voltage: 30...770 VDC

820 VDC (shut down limit)

H2 Interface: 3,0...7,5 bar_g

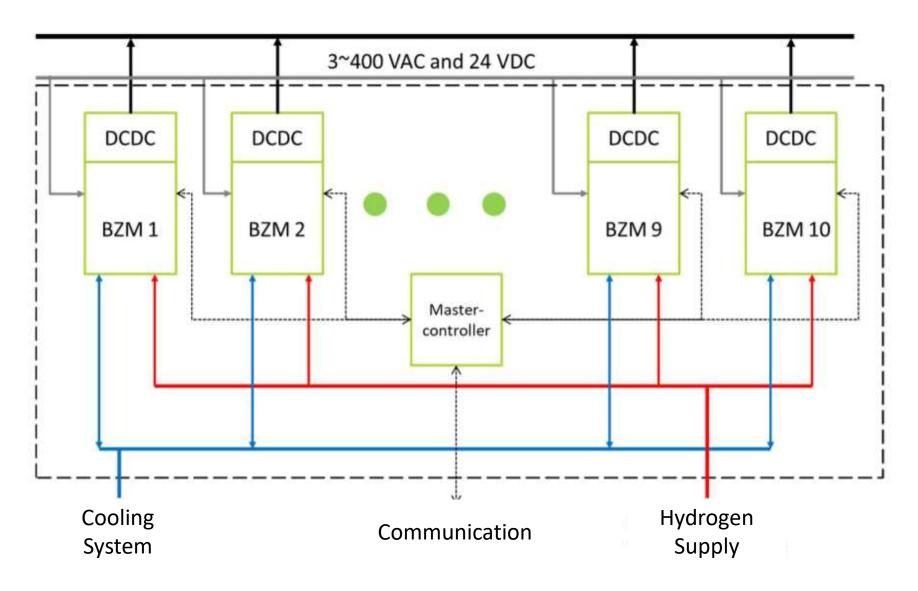
1,5 bar_g (adaptable)

Weight: 881 kg


Volume: 1.500 l

Complete Balance of Plant & DC/DC converter integrated

Internal power/voltage supply & distribution from DC link available

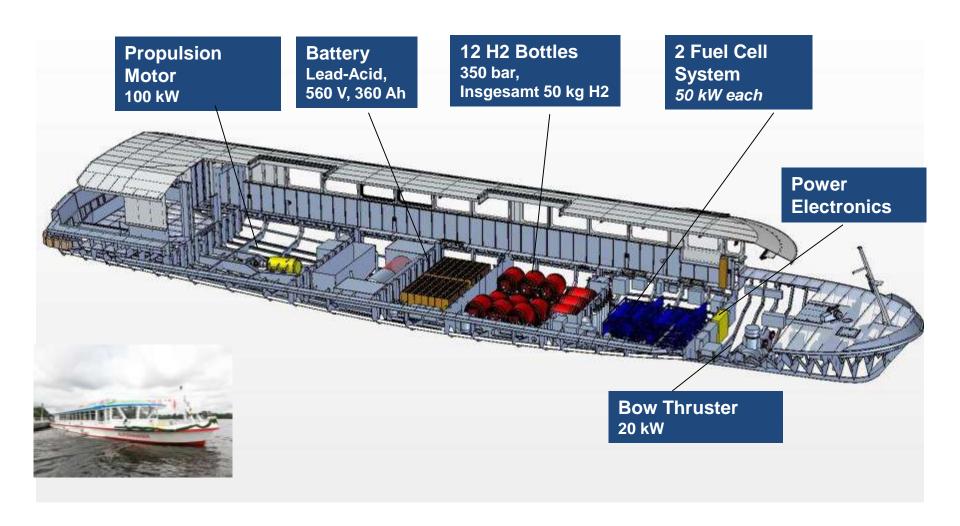

Fuel Cell System (Multi Stack System)

Cascaded Fuel Cell System

Hydrogen Storage Systems for PEFC Applications

	On Board H2 Storage		Automotive				
	On-Board H2 Stor Systems	Passenger Cars	Utility Vehicles	Rail	Maritime		
	Compressed Gaseous	350 bar		Х	Х	Х	
	Hydrogen (CGH)	700 bar	X				
Fuel Cels - Power Systems	Liquid Hydrogen (LH2)					X	Fuel Cels - Power Systems
	Metal Hydride Sto	rage				X	
	Liquid Organic Hyo Carrier (LOHC)	To be developed					
	Ammonia		To be developed				

FCS Alsterwasser



ZEMSHIPS project, Hamburg

- Zero Emission Fuel Cell Ship.
- > Capacity for approx. 100 passengers.
- > ZEMSHIPS project partner: ATG, Linde, German Lloyd, Stadt Hamburg, Proton Motor.
- Proton Motor was responsible for the complete propulsion system of the Ship.
- In use since summer 2008. In approx. 4000 operating hours more than 50.000. passengers were transported (01/2014).
- > 1,7 kg hydrogen consumption per operation hour.

FCS Alsterwasser

Safety Concept

Packaging and System Layout

Avoiding H2 Leakage

- Welding instead of screwing
- Depressurizing high and mid pressure pipes if not in use
- Inerting mid and low pressure pipes if not in use
- Double-walled pipes

Ex-Zone Concept

- Sectional classification in ship
- Forced air ventilation of areas with possibility of H2 leakage
- Monitoring gas concentration

Control

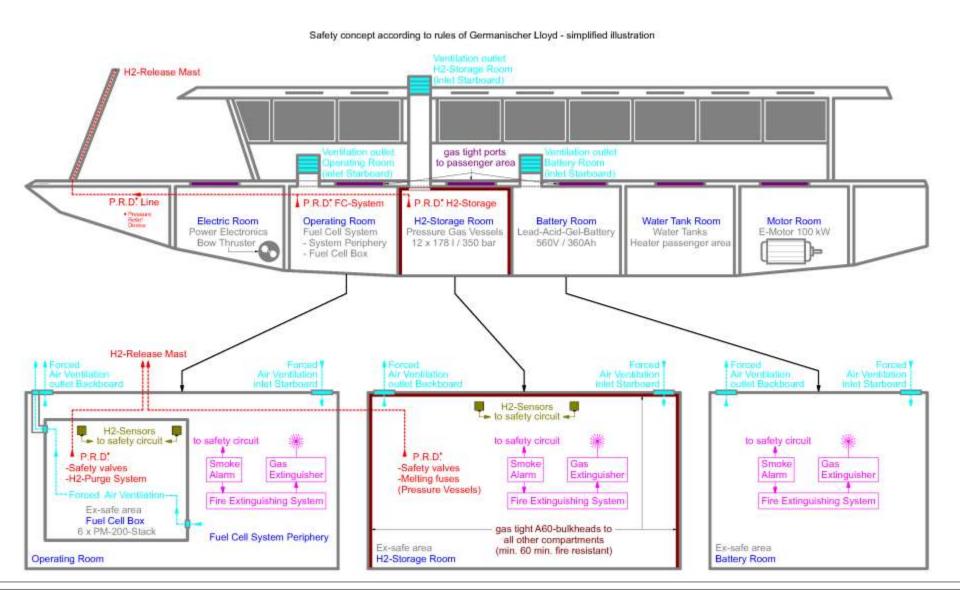
Micro Controller and CVMU's

- Keep System in normal parameters
- Normal shut down if first level switching points are reached
- Prevent system from getting damaged
- Prevent hydrogen from leaving the system

Safety Circuit

Hard wired safety circuit

- Switches for temperature, pressure and flow
- Emergency Shut Down if switching points are reached
- Preventing system from getting damaged
- Preventing hydrogen from leaving the system


PRD's

Pressure Relief Devices

- Safety valves
- Melting fuses
- Preventing the system from getting damaged
- Releasing hydrogen to surrounding if set pressure points or temperatures of melting fuse are reached

Safety Concept Packaging

Reference Mobility Customers/Orders

Automotive

Application: Garbage Truck

FC Power: 43 kW

H2 Storage: 20/30 kg

350 bar

Battery: 136 kWh

Delivery: 6 Systems in 2020

Rail

Application: Rail Milling Train

FC Power: 2 x 107 kW

H2 Storage: To be announced

350 bar

Battery: To be announced

Delivery: 1st Qu. 2021

Maritime

Application: Marine Vessel

FC Power: 144 kW

H2 Storage: 50 kg

Metal-Hydride

Battery: To be announced

Delivery: 1st/2nd Qu. 2021

References Stationary Applications

Grid Stabilisation / Peak Shaving (decentralized hydrogen production)

FC Power: 178kW

Voltage: 400 VAC (Grid dependent)

Customer: APEX

Location: Rostock (Germany)

Power Supply Grid Independent (hydrogen supply)

FC Power: 129 kW

Battery: 180 kWh

Voltage: 400 VAC (Grid independent)

Customer: Shell

Location: Munich (Germany)

References Stationary Applications

UPS / Emergency Power Supply (hydrogen supply)

UPS Telecom

Customer: DB Bahnbau

FC Power: 6 & 9 kW

UPS Road Tunnels

Customer: To be announced

FC Power: 23, 28, 36, 43 kW

Seasonal Energy Shift / Peak Shaving (decentralized hydrogen production)

Houses & Appartments

Projects: Hy2Green (I)

Brütten (CH)

FC Power: 9 kW

Customer: Vonovia

FC Power: 36 kW

Going to Market Strategy

Market Growth

- 1st target market Europe
- Development site Puchheim (Munich)
- Manufacturing site Puchheim (Munich)
- Target system production capacity5.000 per Year
- Target Fuel Cell Stack production capacity 10.000 per Year
- European JV's serial Fuel Cell Stack production

Mass Markets

- World wide market
- Development site Puchheim (Munich)
- Lead Factory in Puchheim (Munich)
- System and Fuel Cell Stack production capacities > 5.000 Systems
- World wide licensees & strategic partnerships

Fully Automated Fuel Cell Stack Manufacturing

Status Quo

Increasing Market Demand

FC capacity 215 MW_{el}:

- 5.850 pcs. 37.0 FC Stacks
- 7.150 pcs. 30.0 Stacks

FC capacity 1.110 MW_{el}:

- 30.000 pcs. 37.0 FC Stacks
- 37.000 pcs. 30.0 FC Stacks

Increasing capacity and value at PM e. g.:

- Using roll material
- Sealing integrated
- Gluing integrated

Fuel Cells · Power Systems

Proton Motor Fuel Cell GmbH

Benzstraße 7 82178 Puchheim Germany

Phone: Fax:

E-Mail:

Web:

+49 (0)89 1276265-11 +49 (0)89 1276265-99 sales@proton-motor.de www.proton-motor.de